WLF 410: Wildlife Populations and their Management
Spring 2008

Instructor: Dr Christine Hunter
Office: 302 A Irving I
Phone: 6743
Email: ffcmh1@uaf.edu
Office hours: M 2-3

TA: Ben Kraft
Office: 417 Irving I
Phone: 7183
Email: ftbrk@uaf.edu
Office hours: TBA

Lecture: MW 8-9 am, 210 Irving I
Lab: W 2:15-5:15 pm, 303 Irving I

Texts: There is no required text for the course but I highly recommend Williams, B.K., J.D. Nichols, and M.J. Conroy. 2002. Analysis and management of animal populations. Academic Press. Electronic or hard copies of chapters from this text and other supplemental readings will be provided.

Course Description:
WLF 410 is intended to build on previous wildlife and ecology courses. The goal is to provide a more in-depth understanding of the techniques used in the analysis, interpretation and management of wildlife populations. We will explore a selection of the tools necessary for wildlife conservation and management. This will include methods for estimating population abundance, population attributes such as survival and population growth. Laboratories will emphasize the development of modeling, analytical, and basic programming skills through analysis of field data. You should then be able to apply these methods to actual situations involving their own field experience or problems common in fisheries, wildlife and conservation biology. A required term project will be used to integrate the various aspects of the course.

Course Objectives

1. To provide a practical but rigorous background in methods for the design and analysis of studies providing information for wildlife management.

2. To provide a working knowledge of the major methods used to estimate parameters and test hypotheses about wildlife populations.

3. To provide experience in population model design, analysis and inference for wildlife populations.

4. To apply the above principles and knowledge to solving practical decision problems in wildlife and conservation management.
Grading:
Final grades will be assigned on a plus/minus scale. A grade of 94-100% = A+; 90-93.9%=A; 87-89.9%=A-; 83-86.9=B+; 80-82.9=B; 77-79.9%=B-; etc. Class participation and attendance are a fundamental component of this class and will constitute 10% of your grade. Your grades will be based on the following measures of performance.

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>90</td>
</tr>
<tr>
<td>Homework Problem Sets</td>
<td>90</td>
</tr>
<tr>
<td>Mid-term</td>
<td>90</td>
</tr>
<tr>
<td>Final</td>
<td>90</td>
</tr>
<tr>
<td>Term Project</td>
<td>90</td>
</tr>
<tr>
<td>Attendance and participation</td>
<td>50</td>
</tr>
</tbody>
</table>

All graded items (e.g. homework, term projects) must be submitted on time for full credit. You will lose 10% of the possible points for every day an assignment is late. Exceptions will be granted only under exceptional circumstances. Plagiarism and cheating will not be tolerated and will result in a grade of F.

Quizzes will be given at the beginning of each lab. Homework for each lab will be due at the beginning of lab the following week.

Term project:
For the term project you will be expected to analyze a real data set and present your findings in a written report and oral presentation. More details will be given in the first few weeks of class.

Prerequisites: BIOL F271; MATH F200X or F272X; STAT F200; WLF 303 or BIOL F471. Students will be expected to have course work or other background in basic ecology, statistical methods, and mathematics through introductory calculus. You must see me within a week of the first class if you do not meet the prerequisites. A faculty initiated withdrawal may be used for students who do not have the required prerequisites or background.

Students with Disabilities:
I am happy to work with the Office of Disabilities Services (203 WHIT, 474-7043) to provide reasonable accommodation to students with disabilities.